Схема стабилизатора тока для светодиодов

a9909381ebb257f 690x415 - Схема стабилизатора тока для светодиодов

e9b206953f22236 60x60 - Схема стабилизатора тока для светодиодов

Иногда у автолюбителей появляется необходимость ограничить ток заряда АКБ, проверить тот или иной источник питания или пропустить напряжение через диоды. Чтобы осуществить одну из этих задач, есть смысл применить стабилизатор тока для светодиодов своими руками. Подробнее о том, какие существуют схемы для разработки данного девайса, вы узнаете ниже.

Схемы стабилизаторов и регуляторов тока

Источники тока не имеют ничего общего с источниками напряжения. Предназначение первых заключается в стабилизации выходного параметра, а также возможном изменении выходного напряжения. Это происходит так, чтобы уровень ток все время был одинаковым. Источники тока используются для запитки светодиодных ламп, заряда АКБ в авто и т.д. Если у вас возникла необходимость сделать простейший импульсный стабилизатор тока ходовых огней 12в для автомобиля своими руками, то предлагаем вашему вниманию несколько схем.

На КРЕНке

Чтобы сделать простейший автомобильный импульсный стабилизатор тока в домашних условиях, вам потребуется микросхема 12v. Для этих целей отлично подойдет lm317. Такой стабилизатор напряжения 12 в lm317 считается регулируемым и способен функционировать с токами бортовой сети до полутора ампер. При этом показатель входного напряжения может составить до 40 вольт, lm317 в состоянии рассеивать мощность до 10 ватт. Но это возможно только в том случае, если будет соблюдаться тепловой режим.

В целом потребление тока lm317 сравнительно небольшое — в районе 8 мили ампер, и данный показатель почти никогда не изменяется. Даже в том случае, если через крен lm317 проходит другой ток или меняется показатель входного напряжение. Как вы можете понять, стабилизатор 12 в lm317 для бортовой сети авто дает возможность удерживать постоянное напряжение на компоненте R3.

Кстати, этот показатель можно регулировать благодаря использованию элемента R2, но пределы будут незначительными. В устройстве lm317 компонент R3 является устройством задающего тока. Так как показатель сопротивления lm317 всегда остается на одном и том же уровне, ток, который проходит через него, также будет стабильным (автор видео — Denis T).

Что касается входа крен lm317, ток на них составит на 8 мили ампер выше. Используя вышеописанную схему, можно разработать самый простой стабилизатор напряжения для ДХО автомобиля. Такой девайс может применяться как устройство электронной нагрузки, источника тока для подзарядки АКБ и других целей. Нужно отметить, что интегральные девайсы током 3а или меньше довольно быстро реагируют на различные изменения импульса. Что касается недостатков, то такие девайсы характеризуются слишком высоким сопротивлением, в результате чего придется применять мощные компоненты.

На двух транзисторах

Довольно распространенными сегодня являются стабилизаторы для бортовой сети автомобиля 12v на двух транзисторах. Одним из основных недостатков такого устройства является плохая стабильность тока, если происходят изменения в питающем напряжении вольт. Тем не менее, данная схема для бортовой сети автомобиля 12v подходит для многих задач.

na dvuh tranzistorah1 - Схема стабилизатора тока для светодиодов Обустройство цепи на транзисторах

Ниже вы сможете ознакомиться с самой схемой. В этом случае устройством, которое раздает ток, является резистор R2. Когда данный показатель растет, соответственно растет и напряжение на данном элементе. В том случае, если показатель составляет от 0.5 до 0.6 вольт, открывается компонент VT1. При открытии данное устройство будет закрывать элемент VT2, в результате чего ток, который проходит через VT2, начнет снижаться. При разработке схемы можно использовать полевой транзистор Мосфет вместе VT2.

Что касается компонента VD1, то он применяется на напряжение от 8 до 15 вольт и нужен в том случае, если его уровень слишком высокий и работоспособность транзистора может быть нарушена. Если транзистор мощный, то показатель напряжения в сети авто может составить около 20 вольт. Необходимо помнить о том, что транзистор Мосфет открывается в том случае, когда показатель напряжения на затворе составит 2 вольта. Если вы используете универсальный выпрямитель для заряда АКБ или других задач, то вам вполне хватит работы транзистора и резистора R1.

На операционном усилителе (на ОУ)

Вариант сборки устройства со специальным усилителем ошибки для авто актуален в том случае, если у вас возникла необходимость разработать устройство, работающее в широких пределах. В данном случае выполнять функцию токозадающего элемента будет R7. Операционный увелитель DA2.2 позволяет усилить уровень напряжения в вольтах токозадающего элемента. Устройство DA 2.1 предназначено для сравнивания уровня опорного параметра. Помните о том, что данная схема девайса на 3а нуждается в дополнительном питании, которое должно подаваться на разъем ХР2. Уровня напряжения в вольтах должно хватить для того, чтобы обеспечить функциональность элементов всей системы.

Устройство для авто должно быть дополнено генератором, в нашем случае эту функцию выполняет элемент REF198, характеризующийся уровнем выходного напряжения в 4 вольта. Сама схема стоит достаточно дорого, так что при необходимости вместо нее можно установить кренку. Чтобы правильно произвести настройку, следует установить ползунок резистора R1 в верхнее положение, а с помощью элемента R3 выставляется нужное значение тока 3а. Чтобы предотвратить возбуждение, используются компоненты R2, C2 и R4.

На микросхеме импульсного стабилизатора

В некоторых случаях устройство для авто должно функционировать не только в большом диапазоне нагрузок, при этом обладая высоким коэффициентом полезного действия. Тогда использование компенсационных устройств будет не целесообразным, вместо них применяются импульсные элементы.

Предлагаем ознакомиться с одной из наиболее распространенных схем МАХ771, ее особенности следующие:

  • уровень опорного напряжения — 1.5 вольт;
  • коэффициент полезного действия при нагрузке от 10 мили ампер до 1 ампера составит около 90%;
  • показатель питания составляет от 2 до 16.5 вольт;
  • мощность на выходе достигает 15 ватт (автор видео — Андрей Канаев).
Читайте также:  Плавятся предохранители ваз 2106

Что представляет собой процедура стабилизации? Компоненты R1 и R2 — это делители выходных показателей схемы. Когда уровень делимого напряжения становится больше, чем опорное, устройство автоматически снижает выходной параметр. При обратном процессе устройство будет увеличивать данный показатель. Вы сможете получить рабочий стабилизированный источник тока в том случае, если цепи будут поменяны таким образом, что система в целом станет реагировать на выходной параметр.

Если нагрузка на устройство не особо большая, то есть менее 1.5 вольт, микросхема будет функционировать в качестве рабочего стабилизатора. Но когда этот параметр начнет резко возрастать, девайс переключится в режим стабилизации. Монтаж резистора R8 необходим только тогда, когда уровень нагрузки слишком высокий и составляет более 16 вольт.

Что касается элементы R3, то он является токораздающим. Одним из основных недостатков такого варианта является слишком высокое падение нагрузки на вышеуказанном резисторе. Если вы хотите избавиться от этого минуса, то для того, чтобы увеличить сигнал, необходимо дополнительно установить операционный усилитель.

Заключение

В этой статье мы рассмотрели несколько вариантов стабилизирующих девайсов для авто. Разумеется, такие схемы всегда можно при необходимости модернизировать, способствуя повышению показателя быстродействия и т.д. Имейте в виду, что если нужно, вы всегда можете использовать специально разработанные микросхемы в качестве регулятора. Также при возможности можно самостоятельно производить достаточно мощные регулирующие компоненты, но таких варианты более актуальны для того, чтобы решать определенные задачи.

Как вы видите, разработка схемы — дело достаточно сложное и кропотливое, к нему нельзя просто так подойти, не имея соответствующего опыта. Отсутствие определенных навыков не позволит получить необходимый результат. Чтобы своими руками сделать такую схему для авто, необходимо внимательно выполнять все действия, описанные выше.

Видео «Устройство для питания светодиодов»

Как в домашних условиях сделать стабилизатор для питания ламп в авто или других целей — узнайте из видео (автор видео — Дед Синь).

fdaa5c4s 100 - Схема стабилизатора тока для светодиодов

Greetings, my friends!
Since there are some thoughts about led tuning, I’m using the Internet in this direction. A good article was written, and so that there was always access to info, I copied my blog. And then the bookmarks, etc. not always at hand. Yes, the author of this memoir, from here , will forgive me.
So let’s start with: LM317 and LEDs

34889e4s 960 - Схема стабилизатора тока для светодиодов

The durability of the LEDs is determined by the quality of manufacture of the crystal, and for white LEDs also by the quality of the phosphor. During operation, the rate of degradation of the crystal depends on the operating temperature. If you prevent overheating of the crystal, the service life can be very large up to 10 years or more.

Why can the crystal be overheated? It can only be caused by an excessive increase in current. Even short pulses of current overload shorten the life of the LED, for example, if visually this effect is not noticeable at the first moment, after a current surge, it seems that the LED is not affected.

The increase in current can be caused by voltage instability or electromagnetic (electrostatic) pickups on the power supply circuit of the LED.

The fact is that the main parameter for the durability of the LED is not its supply voltage, but the current that flows through it. For example, red LEDs on the supply voltage can vary from 1.8 to 2.6 V, white ones from 3.0 to 3.7 V. Even in the same batch of one manufacturer, LEDs with different operating voltages can occur. The nuance is that AlInGaP / GaAs-based LEDs (red, yellow, green — classic) withstand current overload rather well, and GaInN / GaN (blue, green (blue-green), white) LEDs overload by current, for example, 2 times live … 2-3 hours ! So, if you want the LED to light and not to burn for at least 5 years, you need to take care of its power.

If we install LEDs in a chain (serial connection) or connect in parallel, then we can achieve the same luminosity only if the current flowing through them is the same.

1e889e4s 960 - Схема стабилизатора тока для светодиодов

How to build your own hands the simplest current stabilizer? And preferably from low-cost components.

Pay attention to the voltage regulator LM317, which is easy to turn into a current regulator using only one resistor, if you need to stabilize the current in the range up to 1 A or LM317L, if it is necessary to stabilize the current to 0.1 A.

This is the look of LM317 stabilizers with operating current up to 3 A.

de889e4s 960 - Схема стабилизатора тока для светодиодов

3e889e4s 960 - Схема стабилизатора тока для светодиодов

be889e4s 960 - Схема стабилизатора тока для светодиодов

In order for the LM317 to turn into a current stabilizer you need only 1 resistor!

The wiring diagram is as follows:

9889e4s 960 - Схема стабилизатора тока для светодиодов

529e4s 960 - Схема стабилизатора тока для светодиодов

For white LEDs, the average operating voltage is 3.2 V. In a passenger car, the on-board voltage ranges from an average of 11.6 V in battery mode to 14.2 V with the engine running. For Russian cars we take into account emissions in the “return line” and in the forward direction up to 100! volt.

Only 3 LEDs can be switched on in series — 3.2 * 3 = 9.6 volts, plus 1.25 drop on the stabilizer = 10.85. Plus diode from reverse voltage 0.6 volts = 11.45 volts.

The resulting value of 11.45 volts below the lowest voltage in the car is good! This means the output will always be our 20 mA, regardless of the voltage in the vehicle electrical system. To protect against emissions of positive polarity, we put a 24 volt suppressor after the diode.

Читайте также:  Полный привод от нивы на классику

P.S. Select the number of LEDs so that the stabilizer remains as low as possible voltage (but not less than 1.3 volts), this is necessary to reduce the power dissipation at the stabilizer itself. This is especially important for high currents. And do not forget that for currents from 350 mA and above, LMka will require a radiator.
That’s it!

18889e4s 960 - Схема стабилизатора тока для светодиодов

A brief description of the diagram in Figure 1

The number of LEDs in the chain must be selected based on your operating voltage minus the voltage drop across the stabilizer and minus the diode.

For example: You need to connect white LEDs with a working current of 20 mAm in the car. Please note that 20 mA is the operating current for FIRM expensive LEDs ! Only the company guarantees such a current. If you do not know the exact origin, then choose a current in the range of 14-15 mA. This is so that then it would not be surprised why the brightness dropped so quickly or, in general, why they burned out so quickly. This is also true for high-power LEDs. Because what is marked on the product is not always delivered to us.

Question 1: How many can you enable them sequentially? For white LEDs, the operating voltage is 3.0-3.2 volts. Take 3.1. The minimum operating voltage at the stabilizer (based on its reference 1.25) is approximately 3 V. A diode drop of 0.6 V. From here, we sum up all the voltages and we get the minimum operating voltage above which the current stabilizes at a given level (if lower, respectively) will be lower) = 3.1 * 3 + 3.0 + 0.6 = 12.9 V. For a car, the minimum voltage in the network is 12.6 — this is normal.

For white LEDs at 20 mA, 3 pieces can be included, for a 12.6 V network. Considering that when the engine is on, the normal operating voltage of the network is 13.6 V (this is nominal, in other cases it may be higher !), and the working voltage is LM317 up to 37 V

Question 2 : How to calculate the resistance of the current driving resistor! Although the above has been described, the question is asked constantly.

where R1 is the resistance of the current-supplying resistor in Ohms.

1.25 — reference (minimum stabilization voltage) LM317

Ist is the stabilization current in amperes.

We need a current of 20 mA — translate into amperes = 0.02 A.

We calculate R1 = 1.25 / 0.02 = 62.5 ohms . Accept the nearest value of 62 Ohm.

A few words about the group of LEDs.

Ideally, this is a series connection with current stabilization.

c8889e4s 960 - Схема стабилизатора тока для светодиодов

a8889e4s 960 - Схема стабилизатора тока для светодиодов

68889e4s 960 - Схема стабилизатора тока для светодиодов

How to calculate the value of the damping resistor for the LED? The calculation is carried out according to Ohm’s law .

e8889e4s 960 - Схема стабилизатора тока для светодиодов

I led = V pit / on the resistance of the diode and resistor.

We do not know the resistance of the resistor and diode, but we know our operating current and the voltage drop across the LED.

For low-power LEDs with a current of 20 mAm, you must take:

6e529e4s 960 - Схема стабилизатора тока для светодиодов

For example, the supply voltage V pit = 9 V. We connect 1 white LED, the drop on it is 3.1 V. The voltage across the resistor will be = 9 — 3.1 = 5.9 V.

Calculate the resistance of the resistor:

R1 = 5.9 / 0.02 = 295 ohms.

We take a resistor with a close higher resistance of 300 ohms.

PS. The characteristics of the operating current of the LEDs do not always correspond to the truth, this is especially true for LEDs that do not know where, for LEDs (any), great attention should be pa >

181a9e4s 960 - Схема стабилизатора тока для светодиодов

All the best to you, and smooth roads =)

Ни для кого не секрет, что светодиодные лампы периодически перегорают, несмотря на продолжительные гарантийные сроки, установленные производителями. Очень многие просто не знают настоящих причин, по которым они выходят из строя. Тем не менее, никаких особых сложностей здесь нет, просто у таких ламп имеются определенные параметры, требующие обязательной стабилизации. Это сила тока в самой лампе и падение напряжения в питающей сети.

Для решения этой проблемы используется стабилизатор тока для светодиодов. Однако не все стабилизаторы могут эффективно решать поставленную задачу. Поэтому в некоторых случаях рекомендуется изготавливать стабилизатор своими руками. Прежде чем приступать к этому процессу следует тщательно разобраться в назначении, устройстве и принципе работы стабилизатора, чтобы не допустить ошибок при сборке схемы.

Назначение стабилизатора

Основной функцией стабилизатора является выравнивание тока, независимо от перепадов напряжения в электрической сети. Всего существует два типа стабилизирующих устройств – линейные и импульсные. В первом случае осуществляется регулировка всех выходных параметров путем распределения мощности между нагрузкой и собственным сопротивлением. Второй вариант значительно эффективнее, поскольку в этом случае на светодиоды поступает лишь необходимое количество мощности. Действие таких стабилизаторов основано на принципе широтно-импульсной модуляции.

19498355 - Схема стабилизатора тока для светодиодов

У импульсных стабилизаторов более высокий коэффициент полезного действия, составляющий не менее 90%. Однако у них довольно сложная схема и соответственно высокая стоимость по сравнению с приборами линейного типа. Следует отметить, что использование стабилизаторов LM317 допустимо только для линейных схем. Они не могут включаться в цепи с большими значениями токов. Именно поэтому данные устройства наилучшим образом подходят для совместного использования со светодиодами.

Читайте также:  Лампы на шевроле нива 2123

Необходимость использования стабилизаторов объясняется особенностями параметров светодиодов. Они отличаются нелинейной вольтамперной характеристикой, когда изменение напряжения на светодиоде приводит к непропорциональному изменению тока. С увеличением напряжения, возрастание тока в самом начале происходит очень медленно, поэтому свечения не наблюдается. Далее, когда напряжение достигает порогового значения, начинается излучение света с одновременным быстрым возрастанием тока. Если напряжение продолжает увеличиваться, в этом случае происходит еще большее возрастание тока, что приводит к сгоранию светодиода.

51166548 - Схема стабилизатора тока для светодиодов

Характеристики светодиодов отражают значение порогового напряжения в виде прямого напряжения при номинальном токе. Показатель номинального тока для большинства светодиодов малой мощности составляет 20 мА. Мощные светодиоды требуют более высокого номинального тока, достигающего 350 мА и выше. Они выделяют большое количество тепла и устанавливаются на специальные теплоотводы.

Для того чтобы обеспечить нормальную работу светодиодов, питание к ним должно подключаться через стабилизатор тока. Это связано с разбросом порогового напряжения. То есть, различные типы светодиодов отличаются разным прямым напряжением. Даже у однотипных ламп может быть не одинаковое прямое напряжение, причем не только его минимальное, но и максимальное значение.

70957518 - Схема стабилизатора тока для светодиодов

Таким образом, если подключить параллельно два светодиода к одному и тому же источнику, то они будут пропускать через себя совершенно разный ток. Различие токов приводит к преждевременному выходу их из строя или мгновенному перегоранию. Чтобы избежать подобных ситуаций, светодиоды рекомендуется включать совместно со стабилизирующими устройствами, предназначенные для выравнивания тока и доведения его до определенной, заданной величины.

Стабилизирующие устройства линейного типа

С помощью стабилизатора выполняется установка тока, проходящего через светодиод, с заданным значением, не зависящим от напряжения, приложенного к схеме. Если напряжение превысит пороговый уровень, ток все равно останется прежним и не будет изменяться. В дальнейшем, когда общее напряжение увеличится, его рост произойдет лишь на стабилизаторе тока, а на светодиоде оно останется неизменным.

68074493 - Схема стабилизатора тока для светодиодов

Таким образом, при неизменных параметрах светодиода, стабилизатор тока может называться стабилизатором его мощности. Распределение активной мощности, выделяемой устройством в виде тепла, происходит между стабилизатором и светодиодом пропорционально напряжению на каждом из них. Данный тип стабилизатора получил название линейного.

Нагрев линейного стабилизатора тока возрастает вместе с ростом приложенного к нему напряжения. Это является его основным недостатком. Тем не менее, это устройство обладает рядом преимуществ. Во время работы отсутствуют электромагнитные помехи. Конструкция очень простая, что делает изделие достаточно дешевым в большинстве схем.

Существуют такие области применения, в которых линейный стабилизатор тока для светодиодов на 12 В становится более эффективным, по сравнению с импульсным преобразователем, особенно когда напряжение на входе лишь незначительно выше напряжения на светодиоде. Если питание осуществляется от сети, в схеме может использоваться трансформатор, к выходу которого подключается линейный стабилизатор.

79737958 - Схема стабилизатора тока для светодиодов

Таким образом, вначале напряжение снижается до такого же уровня, как и в светодиоде, после чего линейный стабилизатор устанавливает необходимое значение тока. Другой вариант предполагает приближение напряжения светодиода к питающему напряжению. С этой целью выполняется последовательное соединение светодиодов в общую цепочку. В результате, общее напряжение в цепи составит сумму напряжений каждого светодиода.

Некоторые стабилизаторы тока могут быть выполнены на полевом транзисторе, с использованием р-п-перехода. Ток стока устанавливается с помощью напряжения затвор-исток. Ток, проходящий через транзистор, такой же, как и начальный ток стока, указанный в технической документации. Значение минимального рабочего напряжения такого устройства зависит от транзистора и составляет порядка 3 В.

Импульсные стабилизаторы тока

К более экономичным устройствам относятся стабилизаторы тока, основой которых является импульсный преобразователь. Данный элемент известен еще, как ключевой преобразователь или конвертер. Внутри преобразователя мощность прокачивается определенными порциями в виде импульсов, что и определило его название. В нормально работающем устройстве потребление мощности происходит непрерывно. Она непрерывно передается между входной и выходной цепями и также непрерывно поступает в нагрузку.

В электрических схемах стабилизатор тока и напряжения на основе импульсных преобразователей имеет практически одинаковый принцип действия. Единственным отличием является контроль над током через нагрузку, вместо напряжения на нагрузке. Если ток в нагрузке снижается, стабилизатор осуществляет подкачку мощности. В случае увеличения – выполняется снижение мощности. Это позволяет создавать стабилизаторы тока для мощных светодиодов.

89947042 - Схема стабилизатора тока для светодиодов

В наиболее распространенных схемах дополнительно имеется реактивный элемент, называемый дросселем. От входной цепи на него определенными порциями поступает энергия, которая в дальнейшем передается на нагрузку. Такая передача происходит через коммутатор или ключ, находящийся в двух основных состояниях – выключенном и включенном. В первом случае ток не проходит, а мощность не выделяется. Во втором случае ключ проводит ток, обладая при этом очень малым сопротивлением. Поэтому выделяемая мощность также близка нулю. Таким образом, передача энергии происходит практически без потерь мощности. Однако импульсный ток считается нестабильным и для его стабилизации используются специальные фильтры.

Наряду с явными преимуществами, импульсный преобразователь обладает серьезными недостатками, устранение которых требует специфических конструктивных и технических решений. Эти устройства отличаются сложностью конструкции, они создают электромагнитные и электрические помехи. Они затрачивают определенное количество энергии для собственной работы и в результате нагреваются. Их стоимость существенно выше, чем у линейных стабилизаторов и трансформаторных устройств. Тем не менее, большинство недостатков успешно преодолеваются, поэтому импульсные стабилизаторы пользуются широкой популярностью у потребителей.

Драйвер питания светодиодов